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0. Introduction. LetXn = {X1,X2, ...,Xn} be the sample from the r.v.
with the distribution function F(x), x ∈ R1.We will test the hypothesis
H0 : F(x) ∈ G = {G(x,θ), θ ∈ Rk}, where θ is an unknown vector of
parameters. We will consider the Cramér-von Mises statistic

ω2
n(θ̂n) = n

∫ ∞
−∞

(Fn(x)−G(x, θ̂n))2 dG(x, θ̂n) ≡ n
∫ 1

0
(F̂n(t)− t)2dt,

where θ̂n is the maximum likelihood estimator of θ, Fn(x) and F̂n(t)
are the empirical distribution functions, based on the samples Xn and
T n = G(Xn, θ̂n), correspondingly. Under some regularity conditions,

ω2
n(θ̂n) →d ω

2(θ0) =
∫ 1

0
ξ2(t,θ0)dt, (1)

where ξ(t,θ0) is the Gaussian process with zero mean and with some
covariance function K(t,τ,θ0). It follows that in the general case, the
distribution of the Cramér-von Mises statistic may depend on all un-
known parameters or on their part.

It is well known that the empirical process does not depend on
unknown parameter θ0 for the family of the form (see [1, 4])

G = {G((x −θ1)/θ2), −∞ < x <∞, θ2 > 0}.

Another class of the distribution family proposed in [6] is

R = {R((x/β)α), α > 0, β > 0,x ∈ [0,∞)}.

Both of these families are closely interconnected. Here wewant to con-
sider the two cases when the distribution of theω2(θ0) depends on the
parameters. One of the methods for calculating the asymptotic dis-
tributions of the statistics under consideration is also discussed.The
alternative method for testing such hypotheses is set out in [5].

1. Gamma distribution family. Asymptotic distribution of the
Cramér-von Mises statistic for the gamma distribution family

G(x; θ,κ) =
Γ (κ,x/θ)
Γ (κ)

≡H
( x
θ
, κ

)
, −∞ < x <∞, θ > 0, κ > 0,

depends on one unknown parameter κ. This follows from the theorem
below.
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Figure 1. Asymptotic upper critical levels of the Cramér-von Mises statistic for gamma
distribution family

Theorem1. The covariance function of the corresponding to the gamma
distribution family asymptotic empirical process can be represented as fol-
low

K(t,τ ; κ) = min(t,τ)− tτ −C(κ) (e−uuκW (v,κ) +κW (u,κ)W (v,κ)

+e−vvκW (u,κ)− e−(u+v)(uv)κψ′(κ)
) ∣∣∣u=H−1(t,κ), v=H−1(τ,κ),

C(κ) = 1/(Γ (κ)2(κψ′(κ)− 1)),

W (z,κ) =
zκ

κ2 2F2 ({κ,κ}, {1+κ,1+κ};−z) + (Γ (κ,z)− Γ (κ)) (lnz −ψ(κ)) ,
2F2(·) is a generalized hypergeometric function, Γ (κ,z) is the upper in-

complete gamma function, ψ(z) is the digamma function.
A detailed five-digit table was calculated, on the basis of which

table 1 was drawn. The independence of the distribution of statistics
in question in this section of κ was briefly noted in [7].)

2. Family of exponentiated distribution function. The exponen-
tiated exponential distribution F(x; t,κ) = (1 − ex/t)κ, κ > 0, t > 0 was
introduced by [3]. This definition can be generalized to the form ex-
ponentiated distribution function

F(x; t,κ) = Gκ
(x
t

)
, κ > 0, t > 0,

where G(·) is a continuous distribution function. The asymptotic dis-
tribution of the Cramér-von Mises statistic for such a family depends
generally on two parameters.

3. Approximation of the integral of a squared Gaussian process.
Here we present an effective method of calculating the distributions
of integrals from squared Gaussian processes [2]. The integral in (1)
will be approximated by the sum as follows

ω2 =
∫ 1

0
ξ2(t)dt ≈

m∑
i=1

ξ2(ti),
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where ξ(t) is the Gaussian process with zero mean and a covariance
function K(t,τ). Here, we are interested in the Darboux sums, when
ai = 1/m. We will use in the sequence the following notation:

A(t,τ) = 2K2(t,τ), ti = τi = (i − 1/2)/m,

Ak,l(τ) = lim
t↑τ

∂k+l

∂tk∂τ l
A(t,τ), A

k,l
(τ) = lim

t↓τ

∂k+l

∂tk∂τ l
A(t,τ).

Theorem 2. Let there exist all derivatives up to forth order from the
function A(t,τ) on {0 ≤ t,τ ≤ 1, t , τ} and the derivatives are uniformly
bounded on this square without the diagonal. Then the variance Dεm can
be represented asymptotically in the form

Dεm =
c2
m2 +O

( 1
m4

)
, c2 =

1
12

∫ 1

0

(
A1,0(t)−A1,0

(t)
)
dt.

This approximation was applied to the calculation of the above
table. First, the eigenvalues λi , i = 1, ...,m of the matrix (K(ti,j , i, j ∈
(1, ...m)) are calculated. Then these values are substituted in the Smirnov
formula to calculate the distributions of quadratic forms from normal
r.v. If you use the eigenvalues of the covariation function K(t,τ), then
the correction of the quadratic form will be required and the Smirnov
formula can not be used.
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